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Abstract:	
  The	
  UK	
  Met	
  Office	
  GCM	
  applied	
  to	
  HD	
  209458b	
  
To	
  study	
  the	
  complexity	
  of	
  hot	
  Jupiter	
  atmospheres	
  revealed	
  by	
  observaWons	
  of	
   increasing	
  quality,	
  we	
  have	
  adapted	
  
the	
  UK	
  Met	
  Office	
  Global	
  Circula5on	
  Model	
  (GCM),	
  the	
  Unified	
  Model	
  (UM),	
  to	
  these	
  exoplanets.	
  The	
  UM	
  solves	
  the	
  
full	
  3D	
  Euler	
  equa5ons	
  with	
  a	
  height-­‐varying	
  gravity,	
  avoiding	
  the	
  simplificaWons	
  used	
  in	
  most	
  GCMs	
  currently	
  applied	
  
to	
  exoplanets.	
  We	
  present	
  the	
  coupling	
  of	
  the	
  UM	
  dynamical	
  core	
  to	
  an	
  accurate	
  radiaWon	
  scheme	
  based	
  on	
  the	
  two-­‐
stream	
  approxima5on	
  and	
  correlated-­‐k	
  method	
  with	
  state-­‐of-­‐the-­‐art	
  opaci5es	
  from	
  ExoMol.	
  Our	
  first	
  applicaWon	
  of	
  
this	
  model	
   is	
   devoted	
   to	
   the	
  extensively	
   studied	
  hot	
   Jupiter	
  HD	
  209458b.	
  We	
  derive	
   syntheWc	
  emission	
   spectra	
   and	
  
phase	
   curves,	
   and	
   compare	
   them	
   to	
   both	
   previous	
  models	
   also	
   based	
   on	
   state-­‐of-­‐the-­‐art	
   radiaWve	
   transfer,	
   and	
   to	
  
observaWons.	
  We	
  find	
  a	
  reasonable	
  agreement	
  between	
  our	
  day	
  side	
  emission,	
  hotspot	
  offset	
  and	
  observa5ons,	
  while	
  
our	
  night	
  side	
  emission	
   is	
  too	
   large.	
  Overall	
  our	
  results	
  are	
  qualita5vely	
  similar	
  to	
  those	
  found	
  by	
  Showman	
  et	
  al.,	
  
ApJ,	
  2009	
  with	
  the	
  SPARC/MITgcm,	
  however,	
  our	
  simulaWons	
  show	
  significant	
  variaWon	
  in	
  the	
  posiWon	
  of	
  the	
  hoYest	
  
part	
   of	
   the	
   atmosphere	
  with	
   pressure,	
   as	
   expected	
   from	
   simple	
  Wmescale	
   arguments,	
   in	
   contrast	
   to	
   previous	
  works	
  
demonstraWng	
  “verWcal	
  coherency”	
   (Showman	
  et	
  al.,	
  ApJ,	
  2009).	
  Our	
  comparisons	
  strengthen	
  the	
  need	
   for	
  detailed	
  
intercomparisons	
   of	
   dynamical	
   cores,	
   radiaWon	
   schemes	
   and	
   post-­‐processing	
   tools	
   to	
   understand	
   these	
   differences.	
  
This	
  effort	
  is	
  necessary	
  in	
  order	
  to	
  make	
  robust	
  conclusions	
  about	
  these	
  atmospheres	
  based	
  on	
  GCM	
  results.	
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Dayside	
  emission	
  spectrum	
  (len)	
  and	
  4.5	
  μm	
  phase	
  curve	
  (right)	
  calculated	
  from	
  our	
  3D	
  GCM	
  results	
  using	
  our	
  1D	
  
atmosphere	
  code	
  ATMO.	
  We	
  are	
  able	
  to	
  match	
  the	
  dayside	
  emission	
  quite	
  well,	
  including	
  the	
  offset	
  of	
  the	
  peak	
  flux,	
  
while	
  our	
  night	
  side	
  emission	
  is	
  too	
  large.	
  This	
  is	
  also	
  the	
  case	
  for	
  Showman	
  et	
  al.’s	
  models	
  from	
  Zellem	
  et	
  al.	
  (2014),	
  
parWcularly	
  for	
  the	
  model	
  with	
  	
  a	
  setup	
  close	
  to	
  ours	
  (no	
  TiO/VO).	
  

Horizontal	
  temperature	
  and	
  wind	
  fields	
  

Wind	
  as	
  arrows	
  and	
  temperature	
  as	
  colours	
  	
  [K]	
  from	
  our	
  simulaWon	
  of	
  HD	
  209458b	
  at	
  102	
  Pa	
  (len)	
  and	
  105	
  Pa	
  (right)	
  
aner	
   1600	
   Earth	
   days.	
   The	
   flow	
   is	
   diverging	
   from	
   the	
   substellar	
   point,	
   although	
   with	
   a	
   pronounced	
   eastward	
  
equatorial	
  jet.	
  The	
  hotspot	
  is	
  shined	
  eastward	
  of	
  the	
  substellar	
  point	
  as	
  seen	
  in	
  other	
  models	
  (e.g.	
  Showman	
  et	
  al.	
  ApJ	
  
2009)	
  and	
  suggested	
  by	
  Spitzer	
  phase	
  curve	
  observaWons	
  (see	
  e.g.	
  Zellem	
  et	
  al.	
  ApJ	
  2014).	
  

We	
  show	
  on	
  the	
  right	
  the	
  zonal	
  mean	
  of	
  the	
  zonal	
  wind	
  [m/s]	
  
as	
   a	
   funcWon	
   of	
   pressure	
   and	
   laWtude.	
   The	
   zonal	
   jet	
   in	
   the	
  
eastward	
   direcWon	
   menWoned	
   above	
   is	
   clearly	
   seen,	
   and	
   it	
  
reaches	
  its	
  maximum	
  strength	
  at	
  about	
  103	
  Pa	
  with	
  a	
  velocity	
  
of	
  about	
  7	
  km/s.	
  At	
  higher	
   laWtudes	
   the	
  mean	
  flow	
   is	
   in	
   the	
  
opposite	
   (westward)	
   direcWon,	
   and	
   much	
   weaker	
   in	
  
amplitude,	
  with	
  a	
  maximum	
  of	
  about	
  1.2	
  km/s.	
  

One	
   characterisWc	
   of	
   the	
   SPARC/MITgcm	
   that	
   is	
   present	
   in	
  
both	
  hot	
  Jupiter	
  models	
  presented	
  in	
  Showman	
  et	
  al.	
  (2009)	
  is	
  
what	
   the	
   authors	
   term	
   a	
   “verWcal	
   coherency”	
   of	
  
temperatures.	
  This	
  term	
  is	
  used	
  to	
  describe	
  the	
  fact	
  that	
  the	
  
posiWon	
   of	
   the	
   hoYest	
   and	
   coldest	
   part	
   of	
   the	
   atmosphere	
  
vary	
  only	
  modestly	
  between	
  102	
  Pa	
  and	
  105	
  Pa.	
  Even	
  at	
  105	
  Pa	
  
=	
   1	
   bar	
   their	
   models	
   have	
   temperature	
   difference	
   of	
   about	
  
500	
   K	
   between	
   the	
   hoYest	
   and	
   coldest	
   points	
   of	
   the	
  
atmosphere,	
  with	
  the	
  hoYest	
  point	
  being	
  offset	
  significantly,	
  
about	
  80°	
   longitude,	
   from	
   the	
   substellar	
  point.	
   InteresWngly,	
  
we	
   do	
   not	
   see	
   this	
   verWcal	
   coherence	
   in	
   our	
   models.	
   The	
  
reason	
   for	
   this	
   discrepancy	
   is	
   unclear,	
   but	
   we	
   have	
   run	
   our	
  
model	
   significantly	
   longer,	
   giving	
   the	
   system	
   Wme	
   to	
  
equilibrate	
   at	
   higher	
   pressures,	
   and	
   we	
   do	
   not	
   assume	
   the	
  
atmosphere	
   to	
   be	
   shallow.	
   This	
   may	
   help	
   explain	
   these	
  
differences,	
   but	
   more	
   in-­‐depth	
   comparisons	
   are	
   needed	
   to	
  
understand	
  these	
  differences	
  in	
  more	
  detail.	
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Conclusions	
  
•  We	
   obtain	
   a	
   good	
   qualitaWve	
   agreement	
   with	
  

Showman	
   et	
   al.	
   (2009):	
   both	
   global	
   circulaWon	
  
paYerns	
  and	
  syntheWc	
  observaWons	
  are	
  similar.	
  

•  We	
  do	
  not	
  see	
  a	
  “verWcal	
  coherency”.	
  

•  Further	
  intercomparison	
  is	
  needed.	
  
•  We	
  obtain	
  a	
  reasonable	
  fit	
  to	
  the	
  dayside	
  emission.	
  
•  Like	
  other	
  models	
  we	
  overesWmate	
  the	
  night	
  side	
  flux.	
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The	
   correlated-­‐k	
   method	
   is	
   frequently	
   used	
   to	
   speed	
   up	
   radiaWon	
   calculaWons	
   in	
   both	
   one-­‐dimensional	
   and	
   three-­‐
dimensional	
  atmosphere	
  models.	
  An	
   inherent	
  difficulty	
  with	
  this	
  method	
   is	
  how	
  to	
  treat	
  overlapping	
  absorp5on,	
   i.e.	
  
absorpWon	
   by	
   more	
   than	
   one	
   gas	
   in	
   a	
   given	
   spectral	
   region.	
   We	
   have	
   evaluated	
   the	
   applicability	
   of	
   three	
   different	
  
methods	
  in	
  hot	
  Jupiter	
  and	
  brown	
  dwarf	
  atmosphere	
  models,	
  all	
  of	
  which	
  have	
  been	
  previously	
  applied	
  within	
  models	
  in	
  
the	
   literature:	
   (i)	
   Random	
   overlap,	
   both	
   with	
   and	
   without	
   resorWng	
   and	
   rebinning	
   (Lacis	
   &	
   Oinas,	
   JGR,	
   1991),	
   (ii)	
  
equivalent	
  ex5nc5on	
  (Edwards,	
  JAS,	
  1996)	
  and	
  (iii)	
  pre-­‐mixing	
  of	
  opaci5es,	
  where	
  (i)	
  and	
  (ii)	
  combine	
  k-­‐coefficients	
  for	
  
different	
  gases	
  to	
  obtain	
  k-­‐coefficients	
  for	
  a	
  mixture	
  of	
  gases,	
  while	
  (iii)	
  calculates	
  k-­‐coefficients	
  for	
  a	
  given	
  mixture	
  from	
  
the	
   corresponding	
  mixed	
   line-­‐by-­‐line	
   opaciWes.	
  We	
   find	
   that	
   the	
   random	
   overlap	
  method	
   is	
   the	
  most	
   accurate	
   and	
  
flexible	
  of	
  these	
  treatments,	
  and	
  is	
  fast	
  enough	
  to	
  be	
  used	
  in	
  one-­‐dimensional	
  models	
  with	
  resorWng	
  and	
  rebinning.	
  In	
  
three-­‐dimensional	
  models	
  such	
  as	
  GCMs	
  it	
  is	
  too	
  slow,	
  however,	
  and	
  equivalent	
  ex5nc5on	
  can	
  provide	
  a	
  speed-­‐up	
  of	
  at	
  
least	
   a	
   factor	
   of	
   three	
  with	
   only	
   a	
  minor	
   loss	
   of	
   accuracy	
  while	
   at	
   the	
   same	
   Wme	
   retaining	
   the	
   flexibility	
   gained	
   by	
  
combining	
  k-­‐coefficients	
  computed	
  for	
  each	
  gas	
   individually.	
  Pre-­‐mixed	
  opaci5es	
  are	
  significantly	
   less	
  flexible,	
  and	
  we	
  
also	
  find	
  that	
  par5cular	
  care	
  must	
  be	
  taken	
  when	
  using	
  this	
  method	
   in	
  order	
  to	
  properly	
  resolve	
  rapid	
  changes	
   in	
  the	
  
total	
   opacity	
   caused	
   by	
   changing	
  mixing	
   raWos.	
   Our	
   k-­‐tables	
   have	
   sufficient	
   resoluWon	
   to	
   resolve	
   opacity	
   changes	
   of	
  
individual	
  gases,	
  but	
  not	
  to	
  resolve	
  rapid	
  changes	
  in	
  gas	
  mixing	
  raWos	
  caused	
  by	
  e.g.	
  condensaWon.	
  We	
  use	
  the	
  random	
  
overlap	
  method	
  with	
  resorWng	
  and	
  rebinning	
  in	
  our	
  one-­‐dimensional	
  atmosphere	
  model	
  and	
  equivalent	
  exWncWon	
  in	
  our	
  
GCM,	
   which	
   allows	
   us	
   to	
   e.g.	
   consistently	
   treat	
   the	
   feedback	
   of	
   non-­‐equilibrium	
   mixing	
   raWos	
   on	
   the	
   opacity	
   and	
  
therefore	
  the	
  calculated	
  P-­‐T	
  profiles	
  in	
  our	
  models.	
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alent grey absorption” for all minor absorbers and all k-
coe�cients for the major absorber in each band.

Pre-mixed k-coe�cients have been employed in solar sys-
tem planet, exoplanet and brown dwarf atmosphere models (see
e.g. Burrows et al. 1997; Marley & Robinson 2014; Showman
et al. 2009; Wordsworth et al. 2013). This method avoids prob-
lems related to combining k-coe�cients for di↵erent gases, but
is inflexible as mixing must be assumed before k-coe�cients are
computed. Alternatively, gas mixing ratios can be added as di-
mensions to the look-up table of k-coe�cients, however, this
leads to a very large number of dimensions in the table. The
random overlap method has been applied in retrieval models (Ir-
win et al. 2008) and 1D brown dwarf atmosphere models (Trem-
blin et al. 2015, 2016), and assumes that the absorption cross-
sections of di↵erent gases are uncorrelated. The total number
of k-coe�cients in a band scales as the product of the number
of k-coe�cients for each overlapping gas, causing this method
to become computationally expensive, but resorting and rebin-
ning the resulting k-coe�cients can be used to circumvent this
issue (Lacis & Oinas 1991). We have recently applied equivalent
extinction in our GCM to study hot Jupiters (Amundsen et al.
2016, submitted). Like the random overlap method this method
is more flexible than using pre-mixed k-coe�cients, but requires
knowledge of which absorbers should be treated as the major
and minor sources of opacity in each band.

In this paper we compare these schemes in terms of computa-
tional e�ciency and evaluate their accuracy by comparing to re-
sults from line-by-line calculations. In Section 2 we give a brief
overview of the correlated-k method and Section 3 describes the
above overlap schemes in more detail. In Section 4 we apply
them in hot Jupiter atmosphere models, compare them and eval-
uate their computational e�ciency, by using our 1D radiative-
convective equilibrium atmosphere code ATMO (Tremblin et al.
2015, 2016) and our GCM radiation scheme SOCRATES1 (Ed-
wards & Slingo 1996; Edwards 1996; Amundsen et al. 2014).
We give our concluding remarks in Section 5.

2. The correlated-k method

As treating the wavelength-dependence of gaseous absorption
explicitly is too computationally expensive to be performed in
many atmosphere models, the correlated-k method is frequently
used. It considers the probability distribution of the opacity in the
spectral bands and assumes that the mapping between spectral
regions and the probability distribution is vertically correlated.
Originally developed for the Earth atmosphere (Lacis & Oinas
1991), it has since been adopted in both one-dimensional (Mar-
ley et al. 1996; Burrows et al. 1997; Marley & Robinson 2014;
Tremblin et al. 2015) and global circulation models (Showman
et al. 2009; Kataria et al. 2013; Amundsen et al. 2016, submit-
ted) of hot Jupiter and brown dwarf atmospheres. We do not dis-
cuss the correlated-k method in detail here, but refer to e.g. Lacis
& Oinas (1991), Goody et al. (1989) and Thomas & Stamnes
(2002) for in-depth discussions. Note that we have previously
verified the applicability of the correlated-k method in hot Jupiter
and brown dwarf atmosphere models (Amundsen et al. 2014).

In the correlated-k method the opacity spectrum is divided
into bands b. In each band k-coe�cients k

b

l

and corresponding
weights w

b

l

are computed from the probability distribution of the
opacity, with l 2 [1, nb

k

] where n

b

k

is the number of k coe�cients

1 https://code.metoffice.gov.uk/trac/socrates

within band b. The transmission through a homogeneous slab is
given by

T (u) =
Z ⌫̃2

⌫̃1

d⌫̃w(⌫̃)e�k(⌫̃)u =

Z 1

0
dg e

�k(g)u (1)

⇡
n

b

kX

l=1

w

b

l

e

�k

b

l

u, (2)

where ⌫̃ is the wavenumber, ⌫̃1 and ⌫̃2 are wavenumber limits of
band b, w(⌫̃) is a weighting function, and k(⌫̃) and u are the opac-
ity and column density of the gas, respectively. g(k) is the cumu-
lative opacity probability distribution, where g(k) is the proba-
bility of having an opacity  k within the band.

Pseudo-monochromatic fluxes F

b

l

are computed for each k

b

l

-
coe�cient, with the integrated flux in band b given by

F

b =

n

b

kX

l=1

w

b

l

F

b

l

, (3)

and the total spectral integrated flux given by

F =

n

bX

b=1

F

b, (4)

where n

b

is the number of bands.
The k

b

l

-coe�cients are the k-coe�cients for the gas mixture,
i.e. taking into account all absorbers present. Spectral bands can
be chosen such that absorption is dominated by only one gas, the
major absorber, in each band. Other gases may still contribute
significantly to absorption, however, which causes the need to
treat overlapping absorption. In addition, in some spectral re-
gions the major and minor absorbers may change depending on
the gas mixing ratios. Consequently, there is a need to compute
k-coe�cients for a gas mixture.

3. Treatments of gaseous overlap

In this section we briefly discuss three di↵erent methods for
treating overlapping gaseous absorption previously used in hot
Jupiter and brown dwarf atmosphere models in the literature.

3.1. Pre-mixed

The total absorption coe�cient can be calculated by summing
line-by-line absorption coe�cients for all absorbing species
weighted by their relative abundances:

k

tot(⌫̃, P,T ) =
NsX

i=1

k

i

(⌫̃, P,T )⇣
i

(P,T ), (5)

where the sum is over all Ns species, and k

i

(⌫̃, P,T ) and ⇣
i

(P,T )
are the absorption coe�cient and mixing ratio of gas i at pres-
sure P and temperature T , respectively. The total absorption co-
e�cient at a given (P,T ) is then given by k

tot⇢, where ⇢ is the
total gas density. k

tot can be used to compute and tabulate k-
coe�cients for the gas mixture as a function of temperature and
pressure. This approach has several advantages: it is fast, re-
quiring only one set of k-coe�cients for each temperature and
pressure, and it is simple to implement. This technique has been
used in 1D atmosphere models (e.g. Marley & Robinson 2014)
and the SPARC/MITgcm (Showman et al. 2009). It is not par-
ticularly flexible, however, as the local mixing ratios ⇣

i

(P,T )
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i.  Random	
  overlap	
  (Lacis	
  &	
  Oinas,	
  JGR,	
  1991):	
  k-­‐coefficients	
  are	
  computed	
  for	
  each	
  gas	
  and	
  combined	
  assuming	
  
their	
  absorpWon	
  cross-­‐secWons	
  are	
  uncorrelated:	
  
	
  
	
  
	
  
	
  
Mixed	
  k-­‐coefficients	
  can	
  either	
  be	
  used	
  as	
  is	
  (RO)	
  or	
  resorted	
  and	
  rebinned	
  (RORR)	
  into	
  a	
  smaller	
  number	
  of	
  k-­‐
coefficients.	
  

ii.  Equivalent	
   exWncWon	
   (EE,	
   AEE,	
   Edwards,	
   JAS,	
   1996):	
   k-­‐coefficients	
   are	
   computed	
   for	
   each	
   gas	
   and	
   combined	
  
using	
  an	
  “equivalent	
  grey	
  absorpWon”	
   for	
  all	
  minor	
  absorbers	
  and	
  all	
  k-­‐coefficients	
   for	
   the	
  major	
  absorber	
   in	
  
each	
  band:	
  
	
  
	
  
	
  

iii.  Pre-­‐mixed	
  opaciWes	
  (PM,	
  Goody	
  et	
  al.,	
  JGR,	
  1991):	
  k-­‐coefficients	
  for	
  the	
  mixture	
  are	
  computed	
  directly	
  from	
  the	
  
total	
  line-­‐by-­‐line	
  gas	
  opacity:	
  

Amundsen et al.: Treatment of overlapping absorption in hot Jupiter and brown dwarf atmosphere models

must be determined before the time consuming calculation of
k-coe�cients. A potential solution would be to add gas mixing
ratios as dimensions to the look-up table of k-coe�cients, but
the increased size of such a table is prohibitive for application in
atmosphere models with many absorbing gases.

3.2. The random overlap method

The second method we discuss is the random overlap
method (Lacis & Oinas 1991). Assuming that the absorption co-
e�cient of one gas x, is uncorrelated to that of a second gas y, i.e.
that their lines are randomly overlapping, the total transmission
of the gas mixture over some column density (u

x

, u
y

) is given by
a simple scalar product,

T (u
x

, u
y

) = T (u
x

) ⇥ T (u
y

). (6)

The assumption of uncorrelation between the absorption coe�-
cients of di↵erent gases will depend on the adopted bands and
its applicability should be verified by comparing to line-by-line
calculations. We perform such a comparison in Section 4.1.

3.2.1. Without resorting and rebinning

Equation (6) can be rewritten in terms of the k-coe�cients for
the individual gases x and y. The transmission through one layer
is, using Eqs. (1), (2) and (6),
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and

w

xy,lm = w

x,lwy,m. (12)

Running n

k,xn

k,y pseudo-monochromatic calculations using these
k-coe�cients, the total flux can be calculated as usual using
Eqs. (3) and (4). This procedure can be replicated for an arbitrary
number of gases, however, the computation time increases by a
factor of n

k

for each gas added. This method therefore quickly
becomes too computationally expensive for practical use.

3.2.2. With resorting and rebinning

Lacis & Oinas (1991) suggested that resorting the k

xy,lm-
coe�cients and rebinning them to obtain a smaller number of k-
coe�cients k

red
xy,l would circumvent the scaling issue. First the k-

coe�cients of two gases are combined using Eqs. (11) and (12).
These n

k,xn

k,y k-coe�cients are sorted in increasing order, with

the weights sorted using the same mapping. We have used quick-
sort, shellsort and heapsort, all available as standard library rou-
tines (e.g. Press et al. 2007), and found that quicksort is generally
the fastest. We adopt quicksort in the current work.

The sorted k

xy,lm-coe�cients are then binned down to
n

red
k

reduced k

red
xy,l-coe�cients. We determine the corresponding

weights w

red
xy,l, or bins, using a Gauss-Legendre quadrature in

SOCRATES, while we use uniform weights in ATMO, with an
arbitrary number of reduced k-coe�cients n

red
k

. The reduced co-
e�cients k

red
xy,l are found by computing a weighted average of all

k

xy,lm-terms belonging to each reduced bin w

red
xy,l, where w

xy,lm are
used as weights. If a k

xy,lm-term extends over more than a sin-
gle reduced bin, it is split over neighbouring bins such that the
weights sum up to exactly w

red
xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as

k̄

x

=

P
n

k,x

l=1 w

x,lkx,lFv,l
P

n

k,x

l=1 w

x,lFv,l
, (13)

where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n

k

k-
coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by
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P
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, (14)

Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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for each gas added. This method therefore quickly
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weights sum up to exactly w
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xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as
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where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n
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coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by
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Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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k-coe�cients. A potential solution would be to add gas mixing
ratios as dimensions to the look-up table of k-coe�cients, but
the increased size of such a table is prohibitive for application in
atmosphere models with many absorbing gases.

3.2. The random overlap method

The second method we discuss is the random overlap
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k-coe�cients, the total flux can be calculated as usual using
Eqs. (3) and (4). This procedure can be replicated for an arbitrary
number of gases, however, the computation time increases by a
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for each gas added. This method therefore quickly
becomes too computationally expensive for practical use.

3.2.2. With resorting and rebinning

Lacis & Oinas (1991) suggested that resorting the k

xy,lm-
coe�cients and rebinning them to obtain a smaller number of k-
coe�cients k

red
xy,l would circumvent the scaling issue. First the k-

coe�cients of two gases are combined using Eqs. (11) and (12).
These n

k,xn
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the weights sorted using the same mapping. We have used quick-
sort, shellsort and heapsort, all available as standard library rou-
tines (e.g. Press et al. 2007), and found that quicksort is generally
the fastest. We adopt quicksort in the current work.
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xy,lm-term extends over more than a sin-
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After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as
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where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n
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coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by
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Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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must be determined before the time consuming calculation of
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xy,lm-term extends over more than a sin-
gle reduced bin, it is split over neighbouring bins such that the
weights sum up to exactly w

red
xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as

k̄

x

=

P
n

k,x

l=1 w

x,lkx,lFv,l
P

n

k,x

l=1 w

x,lFv,l
, (13)

where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n

k

k-
coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by

k̄

x

=

P
n

k,x

l=1 w

x,lkx,lFs⇤,l
P

n

k,x

l=1 w

x,lFs⇤,l
, (14)

Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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must be determined before the time consuming calculation of
k-coe�cients. A potential solution would be to add gas mixing
ratios as dimensions to the look-up table of k-coe�cients, but
the increased size of such a table is prohibitive for application in
atmosphere models with many absorbing gases.

3.2. The random overlap method

The second method we discuss is the random overlap
method (Lacis & Oinas 1991). Assuming that the absorption co-
e�cient of one gas x, is uncorrelated to that of a second gas y, i.e.
that their lines are randomly overlapping, the total transmission
of the gas mixture over some column density (u

x

, u
y

) is given by
a simple scalar product,

T (u
x

, u
y

) = T (u
x

) ⇥ T (u
y

). (6)

The assumption of uncorrelation between the absorption coe�-
cients of di↵erent gases will depend on the adopted bands and
its applicability should be verified by comparing to line-by-line
calculations. We perform such a comparison in Section 4.1.

3.2.1. Without resorting and rebinning

Equation (6) can be rewritten in terms of the k-coe�cients for
the individual gases x and y. The transmission through one layer
is, using Eqs. (1), (2) and (6),

T (u
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Defining u

xy

= u

x

+ u

y

, we can write the above transmission as
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where
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and

w

xy,lm = w

x,lwy,m. (12)

Running n

k,xn

k,y pseudo-monochromatic calculations using these
k-coe�cients, the total flux can be calculated as usual using
Eqs. (3) and (4). This procedure can be replicated for an arbitrary
number of gases, however, the computation time increases by a
factor of n

k

for each gas added. This method therefore quickly
becomes too computationally expensive for practical use.

3.2.2. With resorting and rebinning

Lacis & Oinas (1991) suggested that resorting the k

xy,lm-
coe�cients and rebinning them to obtain a smaller number of k-
coe�cients k

red
xy,l would circumvent the scaling issue. First the k-

coe�cients of two gases are combined using Eqs. (11) and (12).
These n

k,xn

k,y k-coe�cients are sorted in increasing order, with

the weights sorted using the same mapping. We have used quick-
sort, shellsort and heapsort, all available as standard library rou-
tines (e.g. Press et al. 2007), and found that quicksort is generally
the fastest. We adopt quicksort in the current work.

The sorted k

xy,lm-coe�cients are then binned down to
n

red
k

reduced k

red
xy,l-coe�cients. We determine the corresponding

weights w

red
xy,l, or bins, using a Gauss-Legendre quadrature in

SOCRATES, while we use uniform weights in ATMO, with an
arbitrary number of reduced k-coe�cients n

red
k

. The reduced co-
e�cients k

red
xy,l are found by computing a weighted average of all

k

xy,lm-terms belonging to each reduced bin w

red
xy,l, where w

xy,lm are
used as weights. If a k

xy,lm-term extends over more than a sin-
gle reduced bin, it is split over neighbouring bins such that the
weights sum up to exactly w

red
xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as

k̄

x

=

P
n

k,x

l=1 w

x,lkx,lFv,l
P

n

k,x

l=1 w

x,lFv,l
, (13)

where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n

k

k-
coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by

k̄

x

=

P
n

k,x

l=1 w

x,lkx,lFs⇤,l
P

n

k,x

l=1 w

x,lFs⇤,l
, (14)

Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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must be determined before the time consuming calculation of
k-coe�cients. A potential solution would be to add gas mixing
ratios as dimensions to the look-up table of k-coe�cients, but
the increased size of such a table is prohibitive for application in
atmosphere models with many absorbing gases.

3.2. The random overlap method

The second method we discuss is the random overlap
method (Lacis & Oinas 1991). Assuming that the absorption co-
e�cient of one gas x, is uncorrelated to that of a second gas y, i.e.
that their lines are randomly overlapping, the total transmission
of the gas mixture over some column density (u

x

, u
y

) is given by
a simple scalar product,

T (u
x

, u
y

) = T (u
x

) ⇥ T (u
y

). (6)

The assumption of uncorrelation between the absorption coe�-
cients of di↵erent gases will depend on the adopted bands and
its applicability should be verified by comparing to line-by-line
calculations. We perform such a comparison in Section 4.1.

3.2.1. Without resorting and rebinning

Equation (6) can be rewritten in terms of the k-coe�cients for
the individual gases x and y. The transmission through one layer
is, using Eqs. (1), (2) and (6),
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Defining u

xy
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, we can write the above transmission as
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where
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and

w

xy,lm = w

x,lwy,m. (12)

Running n

k,xn

k,y pseudo-monochromatic calculations using these
k-coe�cients, the total flux can be calculated as usual using
Eqs. (3) and (4). This procedure can be replicated for an arbitrary
number of gases, however, the computation time increases by a
factor of n

k

for each gas added. This method therefore quickly
becomes too computationally expensive for practical use.

3.2.2. With resorting and rebinning

Lacis & Oinas (1991) suggested that resorting the k

xy,lm-
coe�cients and rebinning them to obtain a smaller number of k-
coe�cients k

red
xy,l would circumvent the scaling issue. First the k-

coe�cients of two gases are combined using Eqs. (11) and (12).
These n

k,xn

k,y k-coe�cients are sorted in increasing order, with

the weights sorted using the same mapping. We have used quick-
sort, shellsort and heapsort, all available as standard library rou-
tines (e.g. Press et al. 2007), and found that quicksort is generally
the fastest. We adopt quicksort in the current work.

The sorted k

xy,lm-coe�cients are then binned down to
n

red
k

reduced k

red
xy,l-coe�cients. We determine the corresponding

weights w

red
xy,l, or bins, using a Gauss-Legendre quadrature in

SOCRATES, while we use uniform weights in ATMO, with an
arbitrary number of reduced k-coe�cients n

red
k

. The reduced co-
e�cients k

red
xy,l are found by computing a weighted average of all

k

xy,lm-terms belonging to each reduced bin w

red
xy,l, where w

xy,lm are
used as weights. If a k

xy,lm-term extends over more than a sin-
gle reduced bin, it is split over neighbouring bins such that the
weights sum up to exactly w

red
xy,l in each bin.

After this resorting and rebinning, the process is repeated,
adding one gas at a time, until all gases have been added. The
final reduced k-coe�cients are used to compute the fluxes and
heating rates for the atmosphere. This approach is consequently
much more flexible than pre-mixing gases as gas abundances can
be set at run-time.

3.3. Equivalent extinction

The last method of treating gaseous overlap that we consider
is equivalent extinction (Edwards 1996). It utilizes the fact that
in most bands there is a primary (major) absorber, and includes
additional absorbers through a grey “equivalent extinction”. In
each layer and band an equivalent extinction k̄ is calculated for
each minor gas, which for the thermal component is defined as

k̄

x

=
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n

k,x

l=1 w

x,lkx,lFv,l
P
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x,lFv,l
, (13)

where k

x,l are the k-coe�cients of the minor gas in the layer
with corresponding weights w

x,l, and Fv,l is the thermal flux
in the layer including only absorption by k-term l of the gas.
Pseudo-monochromatic calculations are performed for all n

k

k-
coe�cients of the major gas in each band, with all other ab-
sorbers included by using the equivalent grey absorption k̄

x

. This
e↵ectively reduces the number of pseudo-monochromatic calcu-
lations required to one per k-coe�cient per gas.

The direct component of the stellar flux is readily included
by calculating the transmission for each gas separately and then
taking the product since, assuming random overlap, direct trans-
missions are multiplicative (see Eq. (6)). For the di↵use stellar
beam, which will be non-zero if scattering is included, the equiv-
alent extinction is defined by

k̄
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=
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k,x
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x,lkx,lFs⇤,l
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Fs⇤,l is the direct flux at the lower boundary including only k-
term l of the gas. The use of Fs⇤,l means that equivalent extinc-
tion in the current formulation is less suited for use in hot Jupiter
atmosphere models as the direct stellar flux at the bottom bound-
ary may be zero. In this case we use the smallest k-coe�cient for
the minor gas as k̄

x

. In this work, however, as we only consider
Rayleigh scattering, the main stellar radiation is contained in the
direct beam, making this a minor issue.

3.3.1. Determining the major absorber

We consider two approaches for determining the major absorber
in each band:
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This	
   plots	
   shows	
   the	
   thermal	
   night	
   side	
   flux	
   obtained	
  
using	
   the	
   random	
   overlap	
   method,	
   with	
   corresponding	
  
errors	
   calculated	
   by	
   comparing	
   to	
   line-­‐by-­‐line	
   fluxes.	
  
Fluxes	
  obtained	
  when	
  using	
  the	
  correlated-­‐k	
  method	
  with	
  
the	
  random	
  overlap	
  method	
  match	
  the	
  line-­‐by-­‐line	
  result	
  
very	
   well,	
   with	
   errors	
   of	
   a	
   few	
   percent.	
   We	
   note	
   that	
  
these	
  errors	
  are	
  both	
  due	
  to	
   the	
  use	
  of	
   the	
  correlated-­‐k	
  
method	
   and	
   the	
   random	
   overlap	
   assumpWon,	
   and	
   in	
  
agreement	
   with	
   the	
   errors	
   found	
   in	
   Amundsen	
   et	
   al.,	
  
A&A,	
  2014.	
  Results	
  for	
  a	
  day	
  side	
  P-­‐T	
  profile	
  are	
  similar.	
  

This	
  plot	
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  the	
  thermal	
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  side	
  flux	
  for	
  the	
  various	
  
overlap	
  treatments	
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  corresponding	
  errors	
  calculated	
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  random	
  overlap	
  method	
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resorWng	
  and	
  rebinning	
  (RO).	
  It	
  is	
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  that	
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random	
  overlap	
  method	
  with	
  resorWng	
  and	
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(RORR)	
  with	
  an	
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  number	
  of	
  k-­‐terms	
  significantly	
  
decreases	
  errors.	
  Equivalent	
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  AEE)	
  is	
  
somewhat	
  less	
  accurate	
  than	
  RORR	
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  k-­‐terms.	
  
	
  
Pre-­‐mixed	
  (PM)	
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  are	
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  less	
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  overlap	
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  temperature	
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  changes	
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temperature	
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  temperature	
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  3000	
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Results	
  for	
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Fig. 6. Fluxes (left) and absolute errors in fluxes (right) obtained with
the night side P–T profile in Fig. 1 using SOCRATES. Fluxes obtained
using the random overlap method without resorting and rebinning (RO)
are used to calculate errors for the random overlap with resorting and re-
binning (RORR) with 8, 16 and 32 rebinned k-terms, equivalent extinc-
tion (EE), adaptive equivalent extinction (AEE) and pre-mixed opacities
(PM).

Fig. 7. Same as Fig. 6 but for heating rates. L1 norms of the errors (see
Amundsen et al. 2014, the average heating rate error weighted by the
local heating rates) are 4.5 % for RORR 8, 1.9 % for RORR 16, 1.5 %
for RORR 32, 13 % for EE, 11 % for AEE and 38 % for PM.

plicit interpolation in mixing ratio with PM. The very small dif-
ferences remaining between RO and PM are mainly due to small
di↵erences in the precision of the k-coe�cients, which for RO
are derived for each gas separately while for PM for the mixture
directly. As in Amundsen et al. (2014) we use an opacity table
logarithmically spaced in temperature and pressure, with 20 tem-
perature points between 70 K and 3000 K and 30 pressure points
between 10�1 Pa and 108 Pa, with the opacity interpolation per-
formed linearly in temperature. This is similar to the resolution
used in previous works (Showman et al. 2009).

In Table 1 we give the relative computation times of the over-
lap treatments in Figs. 6 and 7. RO is, as expected, two to three
orders of magnitude slower than the other overlap treatments.
The quickest is PM, although (A)EE is only slightly slower.
RORR, even with only 8 rebinned k-terms is about a factor of
3 slower than (A)EE. We find that a significant fraction of the
computation time with RORR is spent sorting the k-coe�cients,
and it is therefore important to use an e�cient sorting algorithm.
As mentioned in Section 3.2.2 we use a standard quicksort im-

Fig. 8. Fluxes (left) and heating rates (right) obtained with the night side
P–T profile in Fig. 1 using constant mixing ratios equal to the mixing
ratios at P = 104 Pa, T = 1000 K. This eliminates errors caused by the
implicit interpolation of mixing ratios with PM which dominates the
errors seen using this overlap method in Figs. 6 and 7.

Table 1. Computation times of the thermal fluxes in SOCRATES for
various overlap treatments using the night side P–T profile in Fig. 1
not including TiO and VO opacity, see discussion in Section 4.2.1. The
relative CPU computation time is the time relative to the fastest overlap
method (PM).

CPU time [10�2 s] Relative CPU time
RO 1.1 ⇥ 103 1.7 ⇥ 103

RORR 32 12.2 18.5
RORR 16 5.0 7.6
RORR 8 2.8 4.2
(A)EE 1.0 1.5
PM 0.66 1.0

plementation, which we have found to consistently give good
performance compared to shellsort and heapsort.

4.2.2. Day side

We show in Figs. 9 and 10 total (thermal plus stellar) net upward
fluxes and heating rates obtained using the day side P–T profile
in Fig. 1, with corresponding errors, for all overlap treatments
considered here. Errors are, as for the night side, calculated by
comparing to results obtained using RO. Results are overall sim-
ilar to those obtained above for the night side, with errors being
smallest for a large number of rebinned k-terms with RORR. A
significant improvement in the accuracy is seen when using AEE
compared to EE, indicating that the appropriate major absorbers
have changed compared to the night side profile.

Perhaps the most striking result is the large errors caused
by using pre-mixed opacities, which are significantly larger for
the day side compared to the night side. The flux changes very
rapidly between 103 Pa and 104 Pa, which causes a large increase
in the heating rate. Looking at Fig. 1 this discontinuity occurs
as the P-T–profile crosses the condensation curve of TiO and
VO. Both molecules are strong absorbers in the visible, and the
presence of these molecules leads to a strong absorption of the
incoming stellar radiation. The steep vertical gradient in the mix-
ing ratios of TiO and VO when the temperature is near the con-
densation temperature causes a similarly steep gradient in the
opacity. When using PM this transition is smoothed out as the
resolving power is limited by the number of P–T points in the
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Conclusions	
  
•  The	
  random	
  overlap	
  method	
  without	
  resorWng	
  and	
  

rebining	
  is	
  accurate	
  and	
  flexible,	
  but	
  slow.	
  
•  The	
   random	
   overlap	
   method	
   with	
   resorWng	
   and	
  

rebinning	
   is	
   accurate	
   and	
   flexible,	
   and	
   is	
   fast	
  
enough	
  to	
  be	
  used	
  in	
  1D	
  models.	
  

•  Equivalent	
  exWncWon	
  is	
  faster	
  than	
  RORR,	
  although	
  
slightly	
  less	
  accurate,	
  but	
  sWll	
  flexible.	
  Can	
  be	
  used	
  
in	
  GCMs.	
  

•  Pre-­‐mixed	
   opaciWes	
   are	
   not	
   flexible	
   and	
   can	
   lead	
  
to	
  significant	
  errors	
  if	
  mixing	
  raWos	
  change	
  rapidly.	
  


